Hierarchical triple systems in Newtonian and post-Newtonian gravity

Clifford Will University of Florida & Institut d'Astrophysique de Paris GReCO Seminar, IAP, 12 September 2022

Adventures of a general relativist in an N-body world

- Brief history of the 3-body problem
- Hierarchical triple systems
- Higher multipoles and quadrupole-squared terms
- A companion black hole for SgrA*?
- Quadrupole-PN cross-terms and Mercury's perihelion
- Ongoing and future work

GReCO Seminar, IAP, 12 September 2022

Brief history of the 3-body problem

Lunar apsides

- 1687 Newton and the lunar apsides
- 1750 Prize-winning solution by Clairaut
- o 1878 Hill
- The problem of Mercury
 - 1846 Leverrier (and Adams) and Neptune
 - 1859 Mercury's discrepancy and Vulcan
 - o 1912-15 Einstein's solution
- The general 3-body problem
 - 1887 King Oscar II of Sweden and the
 3-body prize
 - 1890-95 Henri Poincaré's flawed attempt
 - o 1913 Sundman's solution in powers of $t^{-1/3}$

Brief history of the 3-body problem

Special solutions

Restricted 3-body problem $(m_3 = 0)$

Sun-Jupiter: Trojan asteroids at L4 & L5

Sun-Earth:

 L_1 - SOHO, LISA Pathfinder, Athena L_2 - WMAP, Planck, GAIA, Webb L_4 & L_5 - dust clouds, 2 asteroids

Brief history of the 3-body problem

The Kozai-Lidov mechanism - 1961 Lidov - spacecraft and moons Kozai - asteroids and comets

Hierarchical triple systems

- Two-body inner orbit, third body at large distance (A >> a)
- Expand perturbing potential in powers of a/A
- Quadrupole order (a/A)³ Kozai-Lidov oscillations
 - Interchange between inclination and eccentricity
 - KL resonances

 $\cos \iota \sqrt{1 - e^2} \propto L_z = \text{constant}$

- Octupole order (a/A)⁴ extreme eccentricity & flips
 - Krymolowski & Mazeh 1999
 - Ford, Kozinsky & Rasio 2000
 - Blaes, Lee & Socrates 2002
- Hot Jupiters
 - Naoz et al 2011
- Kozai mechanism and BBH formation?

Hierarchical triple systems

$$\begin{split} a^{j} &= -\frac{Gmn^{j}}{r^{2}} + \frac{Gm_{3}}{R^{2}} \sum_{\ell=1}^{\infty} \frac{(2\ell+1)!!}{\ell!} \left(\frac{r}{R}\right)^{\ell} \\ &\times n^{L} N^{\langle jL \rangle} \left[\alpha_{2}^{\ell} - (-\alpha_{1})^{\ell} \right] , \\ A^{j} &= -\frac{GMN^{j}}{R^{2}} - \eta \frac{GMr}{R^{3}} \sum_{\ell=1}^{\infty} \frac{(2\ell+3)!!}{(\ell+1)!} \left(\frac{r}{R}\right)^{\ell} \\ &\times n^{L+1} N^{\langle j(L+1) \rangle} \left[\alpha_{2}^{\ell} - (-\alpha_{1})^{\ell} \right] , \end{split}$$

 $\ell = 1$ quadrupole $\ell = 2$ octupole $\ell = 3$ hexadecapole $\ell = 4$ dotriocontupole

Osculating orbit elements

Quadrupole order (da/dt = dA/dt = 0 at all orders)

$$\begin{aligned} \frac{de}{d\tau} &= \frac{15\pi}{2} \alpha \epsilon^3 \frac{e(1-e^2)^{1/2}}{(1-E^2)^{3/2}} \sin^2 z \sin \omega \cos \omega \,, \\ \frac{di}{d\tau} &= -\frac{15\pi}{2} \alpha \epsilon^3 \frac{e^2}{(1-e^2)^{1/2}(1-E^2)^{3/2}} \sin z \cos z \sin \omega \cos \omega \,, \\ \frac{d\Omega}{d\tau} &= -\frac{3\pi}{2} \alpha \epsilon^3 \frac{1}{(1-e^2)^{1/2}(1-E^2)^{3/2}} \frac{\sin z \cos z}{\sin \iota} \left(1+4e^2-5e^2 \cos^2 \omega\right) \,, \\ \frac{d\omega}{d\tau} &= \frac{3\pi}{2} \alpha \epsilon^3 \frac{(1-e^2)^{1/2}}{(1-E^2)^{3/2}} \left[1-\sin^2 z \left(4-5 \cos^2 \omega\right)\right] \,, \\ \frac{dE}{d\tau} &= 0 \,, \\ \frac{d\iota_3}{d\tau} &= -\frac{15\pi}{2} \eta (1+\alpha)^{1/2} \epsilon^{7/2} \frac{e^2}{(1-E^2)^2} \sin z \sin \omega \cos \omega \,, \\ \frac{d\omega_3}{d\tau} &= \frac{3\pi}{4} \eta (1+\alpha)^{1/2} \epsilon^{7/2} \frac{1}{(1-E^2)^2} \left[2+3e^2-3 \sin^2 z \left(1+4e^2-5e^2 \cos^2 \omega\right)\right] \,. \end{aligned}$$

$$\boxed{\tau = t/P_{\text{binary}}} \qquad \alpha \equiv \frac{m_3}{m} \,, \quad \epsilon \equiv \frac{a}{A} \,, \quad \eta \equiv \frac{m_1m_2}{m^2} \,, \quad \Delta \equiv \frac{m_2-m_1}{m} \,. \end{aligned}$$
Standard Kozai-Lidov oscillations when n = 0

Quadrupole order (da/dt = dA/dt = 0 at all orders)

 $\eta = 10^{-3}$; m₃ = m/26; a = 6; A = 100; i = 45°; e = 0.1

Octupole order $\frac{de}{d\tau} = -\frac{15\pi}{256}\alpha\epsilon^4 \Delta \frac{E(1-e^2)^{1/2}}{(1-E^2)^{5/2}} \left((4+3e^2) \left[(1+\cos z)(1+10\cos z-15\cos^2 z)\sin(\omega-\omega_3) + 12\cos^2 z \right] \right) \left[(1+\cos z)(1+10\cos z-15\cos^2 z)\sin(\omega-\omega_3) + 12\cos^2 z \right]$ $+(1-\cos z)(1-10\cos z-15\cos^2 z)\sin(\omega+\omega_3)$

de $\overline{d\tau}$

 $\frac{15\pi}{256}\alpha\epsilon^4\Delta\frac{E(1-e^2)^{1/2}}{(1-E^2)^{5/2}}\,.$ $-(11+10\cos z - 45\cos^2 z)\cos(\omega + \omega_3)$ $-35e^{2}\left[(1+\cos z)(1-3\cos z)\cos(3\omega-\omega_{3})-(1-\cos z)(1+3\cos z)\cos(3\omega+\omega_{3})\right]$ $\frac{d\varpi}{d\tau} = -\frac{15\pi}{256}\alpha\epsilon^4 \Delta \frac{E(1-e^2)^{1/2}}{e(1-E^2)^{5/2}} \bigg((4+9e^2) \left[(1+\cos z)(1+10\cos z - 15\cos^2 z)\cos(\omega - \omega_3) \right] \bigg) \bigg((1+\cos z)(1+10\cos z - 15\cos^2 z) \bigg) \bigg((1+\cos z)(1+10\cos z - 15\cos^2 z) \bigg) \bigg) \bigg((1+\cos z)(1+10\cos z - 15\cos^2 z) \bigg) \bigg((1+\cos z)(1+10\cos z - 15\cos^2 z) \bigg) \bigg) \bigg((1+\cos z)(1+10\cos z - 15\cos^2 z) \bigg) \bigg) \bigg((1+\cos z)(1+10\cos z - 15\cos^2 z) \bigg) \bigg) \bigg((1+\cos z)(1+10\cos z - 15\cos^2 z) \bigg) \bigg) \bigg) \bigg) \bigg((1+\cos z)(1+10\cos z - 15\cos^2 z) \bigg) \bigg) \bigg((1+\cos z)(1+10\cos z - 15\cos^2 z) \bigg) \bigg) \bigg) \bigg((1+\cos z)(1+10\cos z - 15\cos^2 z) \bigg) \bigg) \bigg) \bigg((1+\cos z)(1+10\cos z - 15\cos^2 z) \bigg) \bigg) \bigg) \bigg) \bigg) \bigg((1+\cos z)(1+10\cos z - 15\cos^2 z) \bigg) \bigg) \bigg((1+\cos z)(1+10\cos z - 15\cos^2 z) \bigg) \bigg) \bigg) \bigg((1+\cos z)(1+10\cos z - 15\cos^2 z) \bigg) \bigg) \bigg((1+\cos z) \bigg) \bigg((1+\cos z) \bigg) \bigg) \bigg((1+\cos z) \bigg) \bigg((1+\cos z) \bigg) \bigg((1+\cos z) \bigg) \bigg) \bigg((1+\cos z) \bigg) \bigg((1+\cos z) \bigg) \bigg((1+\cos z) \bigg) \bigg((1+\cos z) \bigg) \bigg) \bigg((1+\cos z) \bigg((1+\cos z) \bigg) \bigg((1+\cos z) \bigg) \bigg((1+\cos z) \bigg) \bigg((1+\cos z) \bigg((1+\cos z) \bigg) \bigg((1+\cos z) \bigg((1+\cos z) \bigg) \bigg((1+\cos z) \bigg((1+\cos z) \bigg((1+\cos z) \bigg) \bigg((1+\cos z) \bigg((1+\cos z) \bigg((1+\cos z) \bigg) \bigg((1+\cos z) \bigg((1+\cos z) \bigg((1+\cos z) \bigg) \bigg((1+\cos z) \bigg((1+\cos z) \bigg((1+\cos z) \bigg) \bigg((1+\cos z) \bigg((1+\cos z) \bigg) \bigg((1+\cos z) \bigg((1+\cos z) \bigg((1+\cos z) \bigg) \bigg((1+\cos z) \bigg) \bigg((1+\cos z) \bigg((1+\cos z) \bigg((1+\cos z) \bigg) \bigg((1+\cos z) \bigg((1+\cos z) \bigg((1+\cos z) \bigg) \bigg((1+\cos z) \bigg((1+\cos z) \bigg((1+\cos z) \bigg) \bigg((1+\cos z) \bigg((1+\cos z) \bigg((1+\cos z) \bigg) \bigg((1+\cos z) \bigg((1+\cos z) \bigg) \bigg((1+\cos z) \bigg((1+\cos z) \bigg((1+\cos z) \bigg((1+\cos z) \bigg) \bigg((1+\cos z) \bigg((1+\cos z) \bigg) \bigg((1+\cos z) \bigg((1+\cos z) \bigg((1+\cos z) \bigg) \bigg((1+\cos z) \bigg) \bigg((1+\cos z) \bigg((1+\cos z) \bigg((1+\cos z) \bigg) \bigg((1+\cos z) \bigg((1+\cos$ $+(1-\cos z)(1-10\cos z-15\cos^2 z)\cos(\omega+\omega_3)$] $-105e^{2}\sin^{2} z \left[(1 + \cos z)\cos(3\omega - \omega_{3}) + (1 - \cos z)\cos(3\omega + \omega_{3}) \right] \Big],$ $\frac{dE}{d\tau} = \frac{15\pi}{256}\eta(1+\alpha)^{1/2}\epsilon^{9/2}\Delta\frac{e}{(1-E^2)^2}\left((4+3e^2)\left[(1+\cos z)(1+10\cos z-15\cos^2 z)\sin(\omega-\omega_3)\right]\right)$ $-(1 - \cos z)(1 - 10\cos z - 15\cos^2 z)\sin(\omega + \omega_3)$ $-35e^{2}\sin^{2} z \left[(1+\cos z)\sin(3\omega-\omega_{3}) - (1-\cos z)\sin(3\omega+\omega_{3}) \right] \Big),\,$ $\frac{d\iota_3}{d\tau} = \frac{15\pi}{256} \eta (1+\alpha)^{1/2} \epsilon^{9/2} \Delta \frac{Ee}{(1-E^2)^3} \sin z \left((4+3e^2) \left[(1+10\cos z - 15\cos^2 z)\sin(\omega-\omega_3) + 12\cos^2 z \right] \right) \left[(1+10\cos z - 15\cos^2 z)\sin(\omega-\omega_3) + 12\cos^2 z \right] d\tau$ $+(1-10\cos z - 15\cos^2 z)\sin(\omega + \omega_3)$] $-35e^{2}\left[(1+\cos z)(3-\cos z)\sin(3\omega-\omega_{3})+(1-\cos z)(3+\cos z)\sin(3\omega+\omega_{3})\right]\right),$ $\frac{d\varpi_3}{d\tau} = -\frac{15\pi}{256}\eta(1+\alpha)^{1/2}\epsilon^{9/2}\Delta\frac{e(1+4E^2)}{E(1-E^2)^3} \left((4+3e^2)\left[(1+\cos z)(1+10\cos z-15\cos^2 z)\cos(\omega-\omega_3)\right]\right) + \frac{1}{2}\frac{1}$ $+(1-\cos z)(1-10\cos z-15\cos^2 z)\cos(\omega+\omega_3)$ $-35e^2\sin^2 z \left[(1+\cos z)\cos(3\omega-\omega_3) + (1-\cos z)\cos(3\omega+\omega_3) \right] \right).$

Agrees with Naoz et al

Octupole order

 $\eta = 10^{-3}$; m₃ = m/26; a = 6; A = 100; i = 65°; e = 0.001; E = 0.6

Hexadecapole order

General relativity

Add the standard pericenter advances

$$\frac{d\varpi}{dt} = 6\pi \frac{Gm}{c^2 a(1-e^2)P_{\text{inner}}},$$
$$\frac{d\varpi_3}{dt} = 6\pi \frac{GM}{c^2 A(1-E^2)P_{\text{outer}}}$$

New parameter

$$\delta = \frac{Gm}{c^2 a}$$

Case studies

System	m_1	m_2	m_3	a (a.u.)	A (a.u.)	е	E	z	ω	ω_3
Hot Jupiters	M_J	M_{\odot}	$40 M_J$	6	100	0.001	0.6	65	45	0
Coplanar Flips	M_J	M_{\odot}	$0.03M_{\odot}$	4	50	0.8	0.6	5	0	0
Equal Masses	$1.4 M_{\odot}$	$1.4 M_{\odot}$	$50 M_{\odot}$	7	80	0.99	0.6	5	45	0

CMW, PRD 96, 023017 (2017)

Case studies

System	m_1	m_2	m_3	a (a.u.)	A (a.u.)	е	E	z	ω	ω_3
Hot Jupiters	M_J	M_{\odot}	$40 M_J$	6	100	0.001	0.6	65	45	0
Coplanar Flips	M_J	M_{\odot}	$0.03M_{\odot}$	4	50	0.8	0.6	5	0	0
Equal Masses	$1.4 M_{\odot}$	$1.4 M_{\odot}$	$50 M_{\odot}$	7	80	0.99	0.6	5	45	0

Li et al 2014

Note: flips suppressed when initial pericenters point in the same direction

Case studies

System	m_1	m_2	m_3	a (a.u.)	A (a.u.)	е	E	z	ω	ω_3
Hot Jupiters	M_J	M_{\odot}	$40 M_J$	6	100	0.001	0.6	65	45	0
Coplanar Flips	M_J	M_{\odot}	$0.03M_{\odot}$	4	50	0.8	0.6	5	0	0
Equal Masses	$1.4M_{\odot}$	$1.4 M_{\odot}$	$50 M_{\odot}$	7	80	0.99	0.6	5	45	0

Hierarchies and 2nd order terms

1st order, secular approx

 $\frac{m_3}{m} \left(\frac{a}{A}\right)^3$ quadrupole

 $\frac{m_3}{m} \left(\frac{a}{A}\right)^4$ octupole

 $\frac{m_3}{m} \left(\frac{a}{A}\right)^5$ hexadecapole

 $\frac{m_3}{m} \left(\frac{a}{A}\right)^6 \quad \text{dotriocontopole} \quad \left(\frac{m_3}{m}\right)^2 \left(\frac{a}{A}\right)^6 \quad Q^2 \text{ terms}$

2nd order, beyond secular

$$\frac{(m_3/m)^2}{\sqrt{1+m_3/m}} \left(\frac{a}{A}\right)$$

 $\left(\right)^{9/2} Q^2 \text{ terms}$

Two-timescale analysis

$$\frac{dX_{\alpha}(t)}{dt} = \varepsilon Q_{\alpha}(X_{\beta}(t), t) \qquad \qquad \theta = \varepsilon t \,, \quad \frac{d}{dt} = \varepsilon \frac{\partial}{\partial \theta} + \frac{\partial}{\partial t}$$

 $X_{\alpha}(\theta, t) \equiv \tilde{X}_{\alpha}(\theta) + \varepsilon Y_{\alpha}(\tilde{X}_{\beta}(\theta), t),$

 $\begin{aligned} \frac{d\tilde{X}_{\alpha}}{d\theta} &= \left\langle Q_{\alpha}(\tilde{X}_{\beta} + \varepsilon Y_{\beta}, t) \right\rangle, \\ \frac{\partial Y_{\alpha}}{\partial t} &= \mathcal{AF}\left(Q_{\alpha}(\tilde{X}_{\beta} + \varepsilon Y_{\beta}, t) \right) - \varepsilon \frac{\partial Y_{\alpha}}{\partial \tilde{X}_{\gamma}} \frac{d\tilde{X}_{\gamma}}{d\theta} \end{aligned}$

$$\frac{d\tilde{X}_{\alpha}}{dt} = \varepsilon \left\langle Q_{\alpha}^{(0)} \right\rangle + \varepsilon^2 \left\langle \mathcal{AF}\left(\frac{\partial Q_{\alpha}^{(0)}}{\partial \tilde{X}_{\beta}}\right) \int_0^t \mathcal{AF}\left(Q_{\beta}^{(0)}\right) dt' \right\rangle$$

The secular approximation

A, B, ... vary on short orbital timescale P_{in} M,N, ... vary on long orbital timescale P_{out}

$$\langle A M \rangle = \langle A \rangle \langle M \rangle + O(P_{\rm in}/P_{\rm out})^2$$

 $\left\langle \mathcal{AF}(AM) \int_{0}^{t} \mathcal{AF}(BN) dt' \right\rangle = \left\langle A \right\rangle \left\langle B \right\rangle \left\langle \mathcal{AF}(M) \int_{0}^{t} \mathcal{AF}(N) dt' \right\rangle$ + $\left\langle \mathcal{AF}(A) \int_{0}^{t} \mathcal{AF}(B) dt' \right\rangle \langle MN \rangle$ $+ O[P_{in}^2/P_{out} \times \langle AMBN \rangle]$ P_{in} x (AMBN)

Pout x (AMBN)

Evolution of the orbit elements

CMW, PRD 103, 063003 (2021)

$$\begin{split} \frac{de}{d\tau} &= \begin{bmatrix} 15\pi & \alpha^2 \epsilon^{9/2} & e(1-e^2) \left[\alpha(x+\alpha)\tau^2 \right) & z & z & z \\ \frac{de}{d\tau} &= \begin{bmatrix} \frac{de}{d\tau} &= \frac{15\pi}{32} & \frac{\alpha^2 \epsilon^{9/2}}{(1+\alpha)^{1/2}} & \frac{15\pi}{32} & \frac{\alpha^2 \epsilon^{9/2}}{(1+\alpha)^{1/2}} \\ z + 3\cos z \right) \sin(2\omega + 2\omega_3) \end{bmatrix}, \\ \frac{d\Omega}{d\tau} &= -\frac{3\pi}{64} \frac{\alpha^2 \epsilon^{9/2}}{(1+\alpha)^{1/2}} \frac{1}{(1-E^2)^3} \frac{\sin(z)}{\sin(i)} \Big[(3+2E^2) \Big(2+33e^2 - 3(2-17e^2)\cos^2 z + 15e^2(1-3\cos^2 z)\cos 2\omega \Big) \\ &- \frac{5}{2}E^2 H(E) \Big(5e^2(1+\cos z)(1-9\cos z)\cos(2\omega - 2\omega_3) + 5e^2(1-\cos z)(1+9\cos z)\cos(2\omega + 2\omega_3) \\ &+ 2(2-17e^2)(1-3\cos^2 z)\cos 2\omega_3 \Big) \Big], \\ \frac{d\omega}{d\tau} &= \frac{3\pi}{64} \frac{\alpha^2 \epsilon^{9/2}}{(1+\alpha)^{1/2}} \frac{1}{(1-E^2)^3} \Big[(3+2E^2)\cos z \Big(64-99e^2 + 3(12-17e^2)\cos^2 z + 15(2-3e^2)\sin^2 z\cos 2\omega \Big) \\ &- \frac{5}{2}E^2 H(E) \Big(5(2-3e^2)[(1+\cos z)^2(2-3\cos z)\cos(2\omega - 2\omega_3) - (1-\cos z)^2(2+3\cos z)\cos(2\omega + 2\omega_3) - (1-\cos z)^2(2+3\cos z)\cos(2\omega + 2\omega_3) \Big], \end{split}$$

$$H(E) = 1 - \frac{2(1 - E^2)}{5(1 + \sqrt{1 - E^2})^2}$$

Agrees with Luo, Katz & Dong (2016)

Astrophysical implications of Q² terms

Astrophysical implications of Q² terms

Application: A companion for SgrA*?

Naoz, CMW et al (2020) Naoz, CMW & Zhang, in prep

- Companion IMBH would perturb the orbit of SO-2
- Orbital plane (i,Ω) &
 pericenter (ω) variations
- Use quadrupole-order Kozai-Lidov perturbations
- Observed bounds from UCLA Galactic Center group are ~ 10⁻³ rad/yr

Rotationally invariant quantities: $|dJ/dt|^{2} = (di/dt)^{2} + \sin^{2} i (d\Omega/dt)^{2} = \frac{3\pi\eta}{4P_{\star}} \left(\frac{a_{c}}{A_{\star}}\right)^{2} \sin i_{\star} \frac{\mathcal{R}(e_{c}, \omega_{c}, i_{\star})}{(1 - e_{\star}^{2})}$ $d\varpi/dt = (d\omega/dt) + \cos i (d\Omega/dt) = \frac{3\pi\eta}{8P_{\star}} \left(\frac{a_{c}}{A_{\star}}\right)^{2} \frac{\mathcal{S}(e_{c}, \omega_{c}, i_{\star})}{(1 - e_{\star}^{2})}$

Post-Newtonian cross-terms

Lagrange planetary equations:

 $\frac{dX_{\alpha}}{dt} = \epsilon Q_{\alpha}^{(3)}(X_{\beta}(t), t) + \delta Q_{\alpha}^{(PN)}(X_{\beta}(t), t)$ $X_{\beta} = \tilde{X}_{\beta} + \epsilon X_{\beta}^{(3)}(t) + \delta X_{\beta}^{(PN)}(t)$ $+ \epsilon \delta Q_{\alpha}^{(EIH)}(X_{\beta}(t),t)$ $\frac{df}{dt} = \frac{\sqrt{mp}}{r^2} - \epsilon \left(\frac{d\omega}{dt} + \cos i\frac{d\Omega}{dt}\right)^{(3)} - \delta \left(\frac{d\omega}{dt} + \cos i\frac{d\Omega}{dt}\right)^{(PN)}$

Mercury's perihelion & PN cross terms

CMW, PRL 120, 191101 (2018)

$$\Delta \omega = \frac{6\pi Gm}{c^2 a (1-e^2)} + \sum_k \frac{3\pi}{2} \frac{m_k}{m} \left(\frac{a}{A_k}\right)^3 \frac{(1-e^2)^{1/2}}{(1-E_k^2)^{3/2}} \left[1 - \left(\frac{Gm}{c^2 a}\right) \frac{25 - 11\sqrt{1-e^2}}{(1-e^2)^{1/2}}\right]$$
PN, 43 as/c Nbody, 532 as/c PN cross term, 4 x 10⁻⁷

 $\Delta\omega_{\rm Current} \simeq 2 \times 10^{-3} \text{ as/c}$ $\Delta\omega_{\rm Cross} \simeq 2 \times 10^{-4} \text{ as/c}$ $\Delta\omega_{\rm BepiColombo} \simeq 4 \times 10^{-5} \text{ as/c}$ $\Delta\omega_{\rm 2PN} \simeq 3 \times 10^{-6} \text{ as/c}$

With Bepi-Colombo, launched 20/10/18, data will be sensitive to PN cross terms

Adventures of a general relativist in an N-body world

- Brief history of the 3-body problem
- Hierarchical triple systems
- Higher multipoles and quadrupole-squared terms
- A companion black hole for SgrA*?
- Quadrupole-PN cross-terms and Mercury's perihelion
- Ongoing and future work
 - Complete "dotrio" terms (with Landen Conway)
 - Update bounds on SgrA* friend (with Smadar Naoz)
 - Test multipole expansion vs numerical solutions

GReCO Seminar, IAP, 12 September 2022